Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.20.21260845

ABSTRACT

ABSTRACT T cell immunity is crucial for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and has been widely characterized on a quantitative level. In contrast, the quality of such T cell responses has been poorly investigated, in particular in the case of CD8 + T cells. Here, we explored the quality of SARS-CoV-2-specific CD8 + T cell responses in individuals who recovered from mild symptomatic infections, through which protective immunity should develop, by functional characterization of their T cell receptor (TCR) repertoire. CD8 + T cell responses specific for SARS-CoV-2-derived epitopes were low in frequency but could be detected robustly early as well as late - up to twelve months - after infection. A pool of immunodominant epitopes, which accurately identified previous SARS-CoV-2 infections, was used to isolate TCRs specific for epitopes restricted by common HLA class I molecules. TCR-engineered T cells showed heterogeneous functional avidity and cytotoxicity towards virus-infected target cells. High TCR functionality correlated with gene signatures of T cell function and activation that, remarkably, could be retrieved for each epitope:HLA combination and patient analyzed. Overall, our data demonstrate that highly functional HLA class I TCRs are recruited and maintained upon mild SARS-CoV-2 infection. Such validated epitopes and TCRs could become valuable tools for the development of diagnostic tests determining the quality of SARS-CoV-2-specific CD8 + T cell immunity, and thereby investigating correlates of protection, as well as to restore functional immunity through therapeutic transfer of TCR-engineered T cells.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-677167.v1

ABSTRACT

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is controlled by the host´s immune response1-4, but longitudinal follow-up studies of virus-specific immunity to evaluate protection from re-infection are lacking. Here, we report the results from a prospective study that started during the first wave of the COVID-19 pandemic in spring 2020, where we identified 91 convalescents from mild SARS-CoV-2 infection among 4554 health care workers. We followed the dynamics and magnitude of spike-specific immunity in convalescents during the spontaneous course over ≥ 9 months, after SARS-CoV-2 re-exposure and after BNT162b2 mRNA vaccination. Virus-neutralizing antibodies and spike-specific T cell responses with predominance of IL-2-secreting polyfunctional CD4 T cells continuously declined over 9 months, but remained detectable at low levels. After a single vaccination, convalescents simultaneously mounted strong antibody and T cell responses against the SARS-CoV-2 spike proteins. In naïve individuals, a prime vaccination induced preferentially IL-2-secreting CD4 T cells that preceded production of spike-specific virus-neutralizing antibodies after boost vaccination. Response to vaccination, however, was not homogenous. Compared to four individuals among 455 naïve vaccinees (0.9%), we identified 5/82 (6.1%) convalescents with a delayed response to vaccination. These convalescents had originally developed dysfunctional spike-specific immune responses after SARS-CoV-2 infection, and required prime and boost vaccination to develop strong spike-specific immunity. Importantly, during the second wave of the COVID-19 pandemic in fall/winter of 2021 and prior to vaccination we detected a surge of virus-neutralizing antibodies consistent with re-exposure to SARS-CoV-2 in 6 out of 82 convalescents. The selective increase in virus-neutralizing antibodies occurred without systemic re-activation of spike-specific T cell immunity, whereas a single BNT162b2 mRNA vaccination sufficed to induce strong spike-specific antibody and systemic T cell responses in the same individuals. These results support the notion that BNT162b2 mRNA vaccination synchronizes spike-specific immunity in all convalescents of mild SARS-CoV-2 infection and may provide additional protection from re-infection by inducing more rigorous stimulation of spike-specific T cell immunity than re-exposure with SARS-CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3678599

ABSTRACT

Background: Hospital staff are at high risk of infection during the coronavirus disease (COVID-19) pandemic. We analysed the exposure characteristics, efficacy of protective measures, and transmission dynamics in this hospital-wide prospective seroprevalence study.Methods: Overall, 4554 individuals were tested for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibodies using a chemiluminescent immunoassay. Individual risk factors, use of personal protective equipment (PPE), occupational exposure, previous SARS-CoV-2 infection, and symptoms were assessed using a questionnaire and correlated to anti-SARS-CoV-2 IgG antibody titres and PCR testing results. Odds ratios with corresponding exact 95% confidence intervals were used to evaluate associations between individual factors and seropositivity. Spatio-temporal trajectories of SARS-CoV-2-infected patients and staff mobility within the hospital were visualised to identify local hotspots of virus transmission.Findings: The overall seroprevalence of anti-SARS-CoV-2-IgG antibody was 2•4% [95% CI 1•9–2•9]. Patient-facing staff, including those working in COVID-19 areas, had a similar probability of being seropositive as non-patient-facing staff. Prior interaction with SARS-CoV-2-infected co-workers or private contacts and unprotected exposure to COVID-19 patients increased the probability of seropositivity. Loss of smell and taste had the highest positive predictive value for seropositivity. The rate of asymptomatic SARS-CoV-2 infections was 25•9%, and higher anti-SARS-CoV-2 IgG antibody titres were observed in symptomatic individuals. Spatio-temporal hotspots of SARS-CoV-2-positive staff and patients only showed partial overlap.Interpretation: Patient-facing work in a healthcare facility during the SARS-CoV-2 pandemic may be safe if adequate PPE and hygiene measures are applied. The high numbers of asymptomatic SARS-CoV-2 infections that escaped detection by symptomatic testing underline the value of cross-sectional seroprevalence studies. Unprotected contact is a major risk factor for infection and argues for the rigorous implementation of hygiene measures. Funding: The study was funded by the Board of Directors of the University Hospital rechts der Isar, Munich.Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: The study was approved by the Ethics Committee of the Technical University of Munich, School of Medicine (approval number: 216/20S).


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.04.20206136

ABSTRACT

Background Hospital staff are at high risk of infection during the coronavirus disease (COVID-19) pandemic. We analysed the exposure characteristics, efficacy of protective measures, and transmission dynamics in this hospital-wide prospective seroprevalence study. Methods and Findings Overall, 4554 individuals were tested for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibodies using a chemiluminescent immunoassay. Individual risk factors, use of personal protective equipment (PPE), occupational exposure, previous SARS-CoV-2 infection, and symptoms were assessed using a questionnaire and correlated to anti-SARS-CoV-2 IgG antibody titres and PCR testing results. Odds ratios with corresponding exact 95% confidence intervals were used to evaluate associations between individual factors and seropositivity. Spatio-temporal trajectories of SARS-CoV-2-infected patients and staff mobility within the hospital were visualised to identify local hotspots of virus transmission. The overall seroprevalence of anti-SARS-CoV-2-IgG antibody was 2.4% [95% CI 1.9-2.9]. Patient-facing staff, including those working in COVID-19 areas, had a similar probability of being seropositive as non-patient-facing staff. Prior interaction with SARS-CoV-2-infected co-workers or private contacts and unprotected exposure to COVID-19 patients increased the probability of seropositivity. Loss of smell and taste had the highest positive predictive value for seropositivity. The rate of asymptomatic SARS-CoV-2 infections was 25.9%, and higher anti-SARS-CoV-2 IgG antibody titres were observed in symptomatic individuals. Spatio-temporal hotspots of SARS-CoV-2-positive staff and patients only showed partial overlap. Conclusions Patient-facing work in a healthcare facility during the SARS-CoV-2 pandemic may be safe if adequate PPE and hygiene measures are applied. The high numbers of asymptomatic SARS-CoV-2 infections that escaped detection by symptomatic testing underline the value of cross-sectional seroprevalence studies. Unprotected contact is a major risk factor for infection and argues for the rigorous implementation of hygiene measures.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL